If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+12x-20=5x
We move all terms to the left:
3x^2+12x-20-(5x)=0
We add all the numbers together, and all the variables
3x^2+7x-20=0
a = 3; b = 7; c = -20;
Δ = b2-4ac
Δ = 72-4·3·(-20)
Δ = 289
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{289}=17$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-17}{2*3}=\frac{-24}{6} =-4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+17}{2*3}=\frac{10}{6} =1+2/3 $
| x^2+11x+14=4 | | 4x2-13-12=0 | | 5x^2+3x+3=-x+4 | | 3x^2+12x=2x+8 | | 88=2x+3x+x | | 4x^2+15x=7x-3 | | Y=-70x+4 | | 6y-2=14y+14 | | 1/16=43x-4 | | Y=-90x+300 | | x-2-5=25 | | Y=-3.5x+300 | | Y=3.5x+300 | | Y=-90x-300 | | 6x–3x+4–2x=3x+1 | | 3r/4+1/4=r/8-1/2 | | x6=4(6)-1 | | x(6)=6+3 | | f(6)=4(6)+2 | | 2x+2(3x-4)=184 | | -2x=3=x+12 | | f(6)=4(6)-1 | | 2x+2(3x)-4=184 | | 3^(9x)=531441 | | f(6)=6+3 | | 2x+2*3x-4=184 | | (2/5)x+6=3x-8 | | 48/3x=4 | | -6r+12=-2 | | 4+3+5x+6-3=30 | | 4x-3(-5)=15 | | 12x+15=6x+17 |